This is according to two researchers who explore the possibility in a new paper submitted to the arXiv pre-print service. Although their work is purely theoretical, Zilong Li and Cosimo Bambi of Fudan University in Shanghai have identified a specific emission signature surrounding their hypothetical wormhole, a signature that may be detected by a sophisticated instrument that will soon be attached to one of the world's most powerful telescopes.
ANALYSIS: Wormhole Time Travel 'Possible' (If You're a Photon)
Sagittarius A* (or Sgr A*) is a region in the Milky Way's core that generates powerful radio waves and astronomers have long suspected that it is the location of a black hole approximately 4 million times the mass of our sun. It wasn't until astronomers were able to track stars orbiting close to the suspected black hole's event horizon, however, that the supermassive black hole was confirmed to be there.
But supermassive black holes are a conundrum.
Now we know what signature our supermassive black hole generates, astronomers have discovered that the majority of other galaxies also possess supermassive black holes in their cores. Even when looking into the furthest cosmological distances at the youngest known galaxies, they also appear to host these black hole behemoths.'
http://news.discovery.com/space/galaxies/is-our-galaxys-monster-black-hole-a-wormhole-140527.htm